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Abstract A well-balanced, large-time-stepping method for conservation laws with source terms is presented. The
numerical method is based on a local reformulation of the balance law as a conservation law with a discontinuous
flux function, and the approximate solution of this equation by a front tracking method. This yields an uncondition-
ally stable method which is particularly well suited to calculate stationary states. The viability of this approach is
demonstrated by several numerical examples.

Keywords Conservation law · Discontinuous solution · Finite-volume scheme · Front tracking · Source term ·
Well-balanced scheme

1 Introduction

In this paper we propose a numerical scheme for conservation laws with source terms, often referred to as balance
laws, a prototype of which is given by{

ut + f (u)x = A(x, u) (x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R,
(1.1)

where u is the (scalar) unknown, f is the flux function, and A is the source term. Frequently the source term takes
the form

A(x, u) = z′(x)b(u), (1.2)
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in which case (1.1) can be seen as a model equation for the Saint-Venant (shallow water) equations. We remark that
the coefficient z in (1.2) can be discontinuous, which would correspond to a discontinuous bottom topography.

Formally (1.1) with the source (1.2) is equivalent to

Ut + AUx = 0, (1.3)

where U = (u, z) and the matrix A is given by

A =
(

f ′(u) −b

0 0

)
.

The eigenvalues of the above matrix (wave speeds) are f ′(u) and 0, which can coincide and thereby result in
so-called “resonance”.

Independently of the smoothness of the initial data and of the flux or the source terms, solutions to (1.1) are
in general discontinuous, and must therefore be interpreted in the weak sense. Consequently, so-called entropy
conditions are used to select a unique weak solution to the initial-value problem. This solution is referred to as an
entropy solution. Weak and entropy solutions of (1.1)–(1.2) are well defined when z′ ∈ L∞.

One of the key issues in designing numerical schemes for (1.1) is the resolution of steady states. If we assume
that the solution is smooth at a steady state ū = ū(x), the flux function f and the source term A are balanced, i.e.,
ū satisfies the equation

f (u)x = A(x, u). (1.4)

More detailed forms of (1.4) can be derived for (1.2). The usual strategy of devising numerical methods for (1.1) is
to use a Godunov-type numerical flux in a finite-volume method coupled with a centered differencing of the source
term. It is well known, see [1], that this does not preserve discrete steady states. Another alternative is provided
by the so-called splitting or fractional-steps method, which is based on separating the updates for the flux and the
source [1]. This method is also deficient with regard to preserving discrete steady states.

Due to these difficulties, so-called well-balanced schemes have been proposed. These schemes are designed to
preserve steady states. A variety of well-balanced schemes can be found in literature, see [2–10] and the references
cited therein. For a partial overview, see also the introductory part of [11].

In many applications the goal is to calculate steady states both accurately and quickly. Accurate transient values
are not needed, as these are seen merely as intermediate steps in a time-marching algorithm to compute the steady
states. In such cases, it is desirable to relax the CFL condition (i.e., the relation between the spatial and temporal
discretization parameters) to reach the steady states as quickly as possible. One such class of problems is provided
by the so-called quasi-steady problems (perturbations of steady states).

Our aim in this paper is to devise a well-balanced finite-volume scheme for (1.1) without an intrinsic CFL
condition, thereby permitting the calculation of steady-state solutions with a minimal computational effort. Our
finite-volume scheme is designed to find and preserve discrete steady states, and therefore we will refer to this
scheme as well-balanced. At the same time, we wish to compute transients states with reasonable accuracy. The
key element of our strategy will be a “local” transformation of the balance law (1.1) to a conservation law with a
space–time-dependent discontinuous coefficient:

ut + f̃ (k(x, t), u))x = 0, (1.5)

where f̃ is the flux modified locally by the source. Equations of this type are by now mathematically and computa-
tionally well understood within a proper framework of entropy solutions, and various types of numerical methods
have been devised and analyzed for these equations (see the list of references given above and for (1.5) in particular
reference [12]). Our strategy is to employ numerical schemes designed for conservation laws with discontinuous
coefficients (1.5) to approximate solutions of (1.1). Furthermore, since we concentrate on rapidly finding the sta-
tionary solutions, we propose a method in which the size of the time step is not limited by the spatial discretization,
i.e., no CFL condition is needed.
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The main features of the scheme are demonstrated by numerical experiments in Sect. 3. We believe that the
approach of using a local discontinuous flux formulation for designing well-balanced schemes will lead to alterna-
tive numerical schemes for systems of conservation laws as well, and plan to address the extension to systems in a
future work.

In a recent paper [13] we analyzed the convergence of a variant of the well-balanced scheme proposed herein.
However, this scheme, being based on a Godunov-type finite-volume discretization of conservation laws with
discontinuous flux, is restricted by the usual CFL condition. The purpose of the present paper is to suggest and
demonstrate a large-time-stepping extension of the scheme from [13]. In addition, by means of numerical experi-
ments, we want to compare the large-time-stepping scheme with other schemes from the literature. We will present
a convergence analysis of our scheme elsewhere.

In this paper we use front tracking as a basis for a finite-volume- type approximation to the solution of the
balance law (1.1). This is in contrast with the approach taken in [11]. In that paper we used the reformulation (1.3)
to design a front-tracking algorithm to solve (1.1), with the source in the form (1.2), directly. Although this also
gives a very efficient method, the drawback of this method is that the solution of the Riemann problem for (1.3)
is quite complicated. Furthermore, this approach is limited to source terms on the form (1.2). The finite-volume
approach used in the present paper also uses front tracking, but it is based on another reformulation of (1.1). This
leads to Riemann problems that are much easier to solve. See Sect. 2 for details.

Although we will not perform a rigorous analysis of our scheme in this paper, it seems appropriate to make
a few remarks regarding convergence analysis of well-balanced schemes in general. First of all, if f ′ �= 0, it is
possible to work within the standard BV (bounded variation) framework, see, e.g., [3,14]. If f ′(u) = 0 for some
u, the situation becomes more complicated. As is the case with conservation laws with discontinuous flux, there
is generally no BV bound for the conserved variable u itself. In order to prove the convergence of approximate
solutions (and existence of solutions), the so-called singular-mapping approach has been used for the last twenty
years to achieve compactness of sequences of approximate solutions, in particular for problems with discontinuous
coefficients, cf. [15–22]. More recently, other analytical tools have been utilized for discontinuous flux problems,
including compensated compactness [12,23] and entropy-process solutions/kinetic solutions [24]. Regarding con-
vergence analysis for conservation laws with source terms, there are only a few papers that deal with the resonant
case where BV estimates are not available; see [25,6,18,13].

We have organized this paper as follows: In Sect. 2 we define the scheme. The scheme is based on front-tracking
schemes for conservation laws with discontinuous coefficients, and we explain how this numerical method (front
tracking) works. Front tracking in turn, depends on the solution of Riemann problems, and we devote a subsection
to explaining how the Riemann problems arising in our setting are solved. In Sect. 3 we show how the scheme
performs in various settings, and compare it with other schemes found in the literature. Finally, we summarize our
findings in Sect. 4.

2 The large-time-stepping scheme

In this section we describe and define the large-time-stepping scheme. The starting point is the following idea. Let
B(x; u) be the function defined by

B(x; u) =
∫ x

A(y, u(y, t)) dy. (2.1)

Fix �t > 0, and set tn = n�t for n = 0, 1, 2, . . . . Define u0 = u0 and un, n > 0, to be the (entropy) weak solution
of

un
t +

(
f

(
un

) − B
(
x; un−1(·, tn−1

))
x

= 0, t ∈ (tn−1, tn]
un

(
·, tn−1

)
= un−1(·, tn−1). (2.2)
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It is obvious that this semi-discrete scheme conserves steady states since these are given by

f (u) − B(x; u) = constant. (2.3)

Note that the discrete steady state (2.3) reflects the flux-source balance that should characterize a steady state.
In order to use this idea to calculate approximate solutions, we need to choose a numerical method for the

following conservation law with a spatially varying (discontinuous) coefficient:

ut + Fn(x, u)x = 0 t ∈ (0,�t], u(x, 0) = un−1(x), (2.4)

where Fn(x, u) := f (u)−B(x; un−1). There are many methods to choose from, such as the aligned Godunov-type
schemes of [15,16] and Staggered Enquist–Osher type schemes of [21,22,26], but to build an unconditionally sta-
ble (large time-stepping) method, we shall use a front-tracking method to solve (2.4). We now briefly describe the
front-tracking method.

2.1 Front tracking

Front tracking is a numerical method for (2.4) that has no fixed time step, and is related to the method of charac-
teristics.

To be concrete, consider Eq. 2.4 where we suppress the index n, i.e.,

ut + F(x, u)x = 0, F (x, u) = f (u) − B(x),

for some piecewise smooth function B(x). The conservation law is assumed to hold for t > 0, while we initially at
t = 0 prescribe u(x, 0) = u0(x).

To define a numerical method we choose (for simplicity) a uniform grid in the x-direction:

xj = j�x, xj+1/2 = (j + 1/2)�x, j ∈ Z,

where the spatial discretization parameter �x > 0 is a given (small) number. Let Ij denote the interval
(xj−1/2, xj+1/2], and set

Bj = 1

�x

∫
Ij

B(x) dx.

Next, fix a small parameter δ > 0, let ui = iδ for i ∈ Z, and define the piecewise linear interpolation

f δ(u) = f (ui) + (u − ui)
f (ui+1) − f (ui)

ui+1 − ui

for u ∈ [ui, ui+1]. (2.5)

Then define the approximate flux function Fδ
�x by

Fδ
�x(x, u) = f δ(u) +

∑
j

Bj 1Ij
(x), (2.6)

where 1� denotes the characteristic function of a set �, i.e., 1�(x) = 1 if x ∈ � and zero otherwise.
Next, let u�x,0 be an approximation to the initial function u0 defined by

u�x,0(x) = 1

�x

∫
Ij

u0(x) dx, x ∈ Ij , (2.7)

if |j | ≤ 1/�x, while we set u�x,0(x) = 0 otherwise.
Now we claim that we can construct the exact (entropy) solution uδ,�x to the initial value problem

u
δ,�x
t + Fδ

�x

(
x, uδ,�x

)
x

= 0, t > 0,

uδ,�x(·, 0) = u�x,0, (2.8)

by a finite number of operations. How this is done is explained below.
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We observe that, initially, at each location x = xj−1/2, we have a Riemann problem of the type{
ut + (

f δ(u) − Bj−1
)
x

= 0, x < xj−1/2,

ut + (
f δ(u) − Bj

)
x

= 0, x > xj−1/2,

u(x, 0) =
{

uj−1, x < xj−1/2,

uj , x > xj−1/2.

(2.9)

The solution of this Riemann problem (see Sect. 2.2 for details) is a piecewise constant function of the form

u(x, t) =

⎧⎪⎨
⎪⎩

uj−1, x − xj−1/2 < σ0t,

ûk, σk−1t ≤ x − xj−1/2 < σkt, k = 1, . . . , m,

uj , σmt ≤ t,

(2.10)

where {σk}mk=1 is an increasing sequence of numbers. This formula is valid for small t and for
∣∣x − xj−1/2

∣∣ small.
We can piece together the solutions of the (finitely many) Riemann problems to obtain an entropy solution for
t ≤ t1, where t1 > 0 is defined to be the first time two discontinuities collide. The resulting function we call uδ,�x .
For a fixed t, uδ,�x is a piecewise constant function. We also see that the discontinuities in uδ,�x move at constant
speeds, and we call these discontinuities fronts.

Assume that the two (or more) fronts collide at t = t1 at a point x̂. Since uδ,�x is piecewise constant, the collision
defines a new Riemann problem of the type (2.9). Of course, the left and right initial values are no longer uj−1 and
uj , and it may happen that the B’s to the left and right are equal. Nevertheless, we can solve this Riemann problem
and the solution is defined by a fan of fronts moving with finite speeds. This means that we can define uδ,�x until
the next time two fronts collide. In this way we propagate the solution in time.

Since we initially have only a finite number of fronts, for a large class of f ′s1 it turns out that there will only be
a finite number of collisions between fronts for all positive times t . In other words, for t larger than a collision time
tM, uδ,�x will have fronts that are moving apart, or are stationary. Thus the exact solution to (2.8) can be computed
by a finite number of operations. For a proof of this, see [19], while for a thorough discussion of front tracking in
general, see [27].

2.2 The solution of the Riemann problems

To complete our description of the front tracking algorithm, we now detail how the Riemann problems are solved.
We start with the simpler case where Bj = Bj−1. In this case we have the Riemann problem

ut + f δ(u)x = 0, u(x, 0) =
{

ul, x < 0,

ur , x > 0.
(2.11)

Recall that f δ is piecewise linear. The algorithm for solving this problem depends on whether ul < ur or not. If
ul < ur we let f̂ δ denote the lower convex envelope of f δ between ul and ur , while if ul > ur we let f̂ δ denote
the upper concave envelope of f δ between ur and ul . Then f̂ δ will be a piecewise linear function. We call the
discontinuity points of df̂ δ(u)/du breakpoints, and we have

{
ûi

}N−1
i=1 of these inside the interval with endpoints

ul and ur . If ul < ur we set û0 = ul and ûN = ur , otherwise we set û0 = ur and ûN = ul , and arrange the
breakpoints so that i �→ ûi is monotone. Define

σi = f δ
(
ûi

) − f δ
(
ûi−1

)
ûi − ûi−1

, i = 1, . . . , N.

1 It is sufficient that for large |u| , |f (u)| > C log(|u| + 1).
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Then the solution of (2.11) is given by

u(x, t) =

⎧⎪⎨
⎪⎩

û0, x < σ1t,

ûi , σi t ≤ x < σi+1t, i = 1, . . . , N − 1,

ûN , σN t ≤ x.

(2.12)

Next, we turn to the more complicated situation where also B has a discontinuity at x = 0. Since the solution only
depends on the difference in B to the left and right, there is no loss of generality in considering the initial value
problem{
ut + (

f δ(u) + B
)
x

= 0, u(x, 0) = ul, x < 0,

ut + f δ(u)x = 0, u(x, 0) = ur, x > 0,
(2.13)

for some (constant) B �= 0. Let

u′
l = lim

x→0− u(x, t), and u′
r = lim

x→0+ u(x, t).

The Rankine–Hugoniot condition implies that

f δ
(
u′

l

) + B = f δ
(
u′

r

)
. (2.14)

The solution to (2.13) consists in finding u′
l,r and then solving the Riemann problem (2.11) with ur = u′

l using only
waves with non-positive speeds, and finally solving the Riemann problem (2.11) with ul = u′

r using only wave
with non-negative speeds.

How this can be done depends on f δ . The simplest case is when f , and consequently f δ is monotone. For
definiteness we assume that u → f (u) is increasing. In this case the solution of (2.11) will never contain fronts
with negative speeds. Thus u′

l = ul , and u′
r solves (2.14) with u′

l = ul . Since f δ is monotone, there exists a unique
solution.

The case where f is not monotone is more complicated. For simplicity, we detail the solution in the case where
f is an even convex function. In this case also f δ will be even and convex.

In order to find a solution, we first find possible candidates for u′
l and u′

r . It is clear that u′
l must be sought among

those values there the Riemann problem (2.11) with ur = u′
l has waves of non-positive speed only, label this set

Hl(ul). We have that Hl is given by

Hl (ul) =
{

(−∞, 0], if ul ≤ 0,

{ul} ∪ (−∞,−ul], if ul > 0.
(2.15)

Similarly, we let Hr be the set of left states such that the Riemann problem (2.11) with ul = u′
r is solved by waves

with non-negative speed. In our case we have that

Hr (ur) =
{

[0,∞), if ur ≥ 0,

{ur } ∪ [−ur,∞), if ur < 0.
(2.16)

fl(u) =
{

f δ(u) + B, if u ∈ Hl(ul),

minHl

{
f δ(u)

} + B, otherwise,

and

fr(u) =
{

f δ(u), if u ∈ Hr(ur),

minHr

{
f δ(u)

}
, otherwise.

In Fig. 1 we indicate the sets Hl,r in the various cases. Now the Rankine–Hugoniot condition says that u′
l and u′

r

must solve the equation

fl

(
u′

l

) = fr

(
u′

r

)
. (2.17)

123



A large-time-stepping scheme for balance equations 357

f(u)

u

ul

[

Hl

f(u)

u

ul

Hl

]

f(u)

u

Hr

ur

[

f(u)

u

Hr

ur

[

Fig. 1 The set Hl and Hr in the two cases ul,r < 0 and ul,r ≥ 0

f(u)

u

Hr

ur

[

ul

[

Hl

x

u

Fig. 2 The solution of a Riemann problem in (u, f ) (left) and in (x, u) (right)

Since fl will be a convex non-increasing function and fr will be a convex non-decreasing function, (2.17) will
always have an infinite number of solutions. Indeed, for any value φ ≥ min {fl(ul), fr (ur)} we can find a unique
pair (u′

l , u
′
r ) satisfying (2.14) with f (u′

l ) = φ. We use the so-called minimal jump entropy condition which states
that among all possible solutions, we choose the pair minimizing

∣∣u′
l − u′

r

∣∣. In our case this is the same as choosing
the minimal possible flux across x = 0. Once u′

l and u′
r are determined, we can solve the Riemann problems to the

left and right of x = 0 and piece together the solutions to form u(x, t) as in (2.10).
Figure 2 shows an example of the solution, both in the (u, f ) plane and in the (x, u) plane. The procedure for

finding u′
l,r in the general case is similar, but the formulas are more complicated, see [28] for details.

2.3 The large-time-stepping scheme

Now we are in a position to define a fully discrete scheme based of the semi-discrete scheme (2.2). To this end fix
three independent (small) parameters δ,�x, and �t . Use δ to define the piecewise linear approximation f δ from
f by (2.5). The approximate initial data is defined as in (2.7). For an integrable function g, let Pg be defined as
mapping to the piecewise constant functions by taking cell averages over Ij , i.e.,

(Pg)(x) = 1

�x

∑
j

(∫
Ij

g(x) dx

)
1Ij

(x).
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Next, define the sequence
{
uδ

�x,n

}
n>0

by solving

∂tu
δ
�x,n + ∂x

(
f δ

(
uδ

�x,n

) + Bn−1(x)
)

= 0,

uδ
�x,n(x, tn−1) = (Puδ

�x,n−1(·, tn−1))(x), (2.18)

while u�x,0 is defined by (2.7). The “coefficient” Bn is found by defining

Bn
j = Bn

j−1 + �x

4

(
A

(
xj−1/2+, ūn

j−1

)
+ A

(
xj−, ūn

j−1

)
+ A

(
xj+, ūn

j

)
+ A

(
xj+1/2−, ūn

j

))
, (2.19)

where we have set ūn
j = P(uδ

�x,n(·, tn))|Ij
. Recall, that since B is a primitive of A, the above formula for B is a

discrete approximation to the primitive. The way in which Bn is defined is not unique and we can other equivalent
definitions which agree up to truncation error of the scheme. For simplicity, we assume that A(x, 0) = 0. This
ensures that by finite speed of propagation, Bn

j = 0 for sufficiently negative j . Finally, define

Bn(x) =
∑
j

Bn
j 1Ij

(x). (2.20)

This is an approximation of the function B(x, uδ
�x,n−1) defined in (2.1). Other approximations are also possible,

and these would result in slightly different discrete steady states.
Note that the discrete steady state preserved by the fully discrete scheme satisfy

f δ(un
j ) − Bn

j = constant, (2.21)

which is the fully discrete version of (2.3). The solution to (2.18) is computed using front tracking. We plan to
return to the issue of theoretical convergence (as the three parameters δ,�x, and �t vanish) of this scheme in a
forthcoming paper.

We remark that this scheme can be interpreted as a finite-volume scheme. To do this we observe that ūn
j is the

cell average over Ij of the solution of (2.18). Thus

ūn
j = ūn−1

j − 1

�x

(
Fn

j+1/2 − Fn
j−1/2

)
,

where the numerical flux function is given by

Fn
j+1/2 =

∫ tn

tn−1
f δ

(
uδ

�x,n

(
xj+1/2, t

))
dt + �tBn−1

j .

Of course, we do not need to compute these integrals, but they can be interpreted as numerical fluxes.

3 Numerical experiments

In this section we present two numerical experiments where we have used the large-time-step method. In order to
have fewer parameters, we have set δ = �x/2, and used the CFL number and �x to parametrize the method. Let
n be the number of points in the space discretization. In this context, the CFL number λ is defined as

λ = �t

�x
max

u

∣∣f ′(u)
∣∣. (3.1)

We remark that by taking a CFL number of 0.5, the scheme proposed here is equivalent to the Godunov-type scheme
proposed in our recent paper [13].
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Fig. 3 Approximations to the solution u (z-axis) of (3.2) with different CFL numbers; λ = 20 (top left), λ = 10 (top right), λ = 5
(bottom left) and λ = 2.5 (bottom right)

3.1 Numerical experiment 1

In this experiment, we consider the following initial value problem:

ut +
(

1

2
u2

)
x

= −z′(x)u, z(x) =
{√

4 − x2, |x| < 2

0, otherwise,

u(x, 0) =
{

1, x < −3

0, x > −3.
(3.2)

We consider (3.2) in the domain x ∈ [−3.5, 3.5], t ∈ [0, 8], and impose a constant inflow of 1 at x = −3.5 and
an open boundary at x = 3.5.

The exact solution in this case is a right-moving shock which starts interacting with the bottom topography z

and creates a smooth wave. The steady state is reached after the shock has moved out of the domain and is given
by the function

u(x) = 1 − z(x).

In order to test the method for various CFL numbers, we exhibit the results of computations for the CFL numbers
20, 10, 5, and 2.5. These are shown in Fig. 3. The errors at the time t = 8 are shown in Table 1. We show both the
L1 and L∞ errors by comparing the computated solutions with the exact steady state. Based on these, it seems that
the computations with λ = 5 and λ = 2.5 are acceptable, while for larger CFL numbers the results are inaccurate
near x = 2. In all of these computations we used �x = 7/n, where n is the number of cells. We also check how
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Fig. 4 Approximations to the solution u of (3.2) (z-axis) with �t constant, λ = 2.5 (top left), λ = 5 (top right), λ = 10 (bottom left)
and λ = 20 (bottom right)

the approximate solutions vary when �t is fixed and the spatial discretization �x varies. We show the results of
these computations in Fig. 4, while the errors are displayed in Table 1. Here the CFL numbers vary from 2.5 in the
case where �x = 7/50–20 in the case where �x = 7/400. We see that the approximations are very similar despite
the larger difference in CFL numbers. Hence the quality of the results are largely independent of �x and the CFL
number.

We also compare the small-time-step version of this method by taking the CFL number to be 0.5. As remarked
earlier, this scheme is equivalent to the Godunov-type scheme proposed in [13]. Finally, we compare the above
results with the solutions computed by the well-balanced scheme of [6], which is based on a projection to the local
steady states. The numerical results are shown in Fig. 5. As expected, the scheme resolves the solution very well
at this low CFL number and the steady state is approximated to very high degree of accuracy. On the other hand,
the well-known well-balanced scheme of [6] leads to unphysical transients, although it also resolves the steady
state to machine precision. From the above data, the large-step-method gives very good results at reasonable CFL
numbers even with coarse discretizations in space. The results for both transients as well as steady states are very
good at a CFL number of 5, thus leading to a order of magnitude speed-up compared to the standard time-step
(CFL = 0.5) version of the scheme. For higher CFL numbers, the transients seem to be poorly resolved for
coarse mesh discretizations. This is expected as interesting wave phenomena are averaged over longer periods
of time. By going to finer meshes in space, the quality of the results improves significantly at even higher CFL
numbers.
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Table 1 100 × L∞ error
and 100 × L1 error, where λ

denotes the CFL number
and �x = 7/n

λ\n 50 100 200

100 × L∞ error
20 163.1241 411.0398 49.6169
10 423.2284 48.1385 0.0326
5 13.5090 0.0583 0.0009
2.5 0.0003 0.0003 0.0005

100 × L1 error
20 255.1162 176.5625 28.2192
10 169.1933 22.7572 0.0108
5 6.3836 0.0208 0.0007
2.5 0.0003 0.0006 0.0007
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Fig. 5 Approximations to the solution u of (3.2) (z-axis) with �x = 7

100
, λ = 0.5 (left) and the well-balanced scheme of [6] (right)

3.2 Numerical experiment 2

In this experiment we consider the equation

ut +
(

1

2
u2

)
x

= −z′(x)u, z(x) = − cos(πx), (3.3)

with the initial data

u(x, 0) = cos(πx) + 1

10
sin(4πx).

We consider the above problem in the domain [−1, 1] with periodic boundary conditions. The exact steady state is
given by

u(x) = cos(πx).

Thus the initial data is a periodic perturbation of the steady state and we expect the solution to converge to the
steady state. This problem is a prototype for quasi-steady problems. The exact solution consists of small amplitudes
waves which decay quickly to the steady state. We have computed the solution to this problem with both the small
(CFL = 0.5) time-step version of our method and the well-balanced scheme of [6] and show the solutions in Fig. 6.
Both schemes perform equally well and resolve the steady state to machine precision. But our interest in such
quasi-steady problems is to compute the steady state accurately and quickly. Hence, we increase the CFL number
in an attempt to take large time steps. We are not interested in an accurate resolution of the transients in this case.
We show the results with a really large-time-step (λ = 80) version of our method in Fig. 7. From the figure, it
is clear that the steady state is resolved accurately even at such high CFL numbers. As expected, there are some
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Fig. 7 The numerical solution u to (3.3), (z-axis), �x = 1/200, λ = 80

oscillations in the transient as the averaging is over really large time steps. But we are interested in the resolution
of the steady state and see that we can increase the size of time step to more than two orders of magnitude to obtain
accurate resolutions of the steady state.

The above examples illustrate the effectiveness of this numerical method. It resolves steady states quite accu-
rately. The method is fast as large time steps can be taken due to high CFL numbers. Taking large time steps
can lead to incorrect transients but the solutions improves considerably by refining the space mesh as seen in
Figs. 1 and 2.

4 Conclusion

We present a new numerical method for conservation laws with source terms. The main numerical issue is the
accurate resolution of steady states. In order to preserve discrete steady states, the numerical method has to reflect
the balance between the flux and the source at the steady state.

We propose a numerical scheme based on local reformulation the balance law as a conservation law with discon-
tinuous coefficients. The resulting equations are solved by a front tracking method based on solutions of Riemann
problems. The method preserves discrete steady states exactly, and is therefore well-balanced. Since we use front
tracking, the method is unconditionally stable and we can take arbitrarily large time steps without blowup.

Numerical examples are presented and they illustrate the effectiveness of the method. In particular, the method
resolves discrete steady states to a high degree of accuracy. The method is also fast since we can take very large
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time steps. We have also compared the method with other existing well-balanced schemes. The method is very
effective for quasi steady problems, i.e., perturbations from steady states. We plan to extend the large-stepping and
well-balanced schemes of this paper to more interesting applications like shallow-water and Euler equations in a
future work.
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